Analysis of Java Client/Server and Web Programming Tools for
Development of Educational Systems

Tomasz Mildner
solid@dragon.acadiau.ca
Jodrey School of Computer Science, Acadia Universit
Wolfville, NS, Canada BOP 1X0

Abstract: This paper provides a thorough analysis of old aed/ programming tools for
development of client/server programs, in particileb based programs. The focus is on
development of educational systems that use irteeashared workspaces, to provide
portable and expandable solutions.

0. Introduction

Computers have been used in education for man f{@dessi & Trollip 1991; Colbourne & Cockerton-Thar
1989; Maurer & Tomek 1990; Ketinger 1991; MaureB&9Maurer & Tomek 1990, Norman 1996), however
they have been mostly used in labs, rather thafagsrooms. During last several years, variousersities have
introduced “electronic” classrooms, see for exanfMéhlhauser 1996, Mildner & Nicholl 1996, Shneitdan
1995) in which each student has access to hersocdmputer, either by using a mobile notebook cderpu
(Wake Forest University 1997, Acadia University I9®r using a stationary computer (North Carolina).
these classrooms, computers are usually netwotkaslilzg students to access the Internet.

Various organizations started to develop integrageldicational systems which provide numerous
facilities, including access to various kinds offormation about courses, such as course descrition
computerized course materials, discussion groupe, moms, on-line tests, etc. The most notablenples of
these systems are ACME (ACME 1997) and WebCt (Golgiti996). Some software tools support specific
disciplines; for example physics courses have lietefreatly from the use of computer based pregiemns to
simulate experiments; see (Holmes & Porter 199&weéler, most of the existing systems do not support
collaborative and interactive sharing of tools. sStpport groups of people working towards a commuail,gone
could design computer-based systems that providmtarface to a shared workspace. Indeed, suclersgst
have been extensively researched; see e.g. (Berfded, and Grudin, 1994).

In this paper, we analyze various software techesgihat can be used to develop educational systems,
in particular to implement shared workspaces. Oainnconcern is a development of portable, expardabt
maintainable software. We are also interestedfinieficy issues; that is building systems that s@md a heavy
load of interactive users. Our paper starts withart description of relevant terms and providderemces for
those readers that would like to expand their ustdeding of these terms. We present a traditiopptaach
that uses dynamic HTML pages generated by CGl ts¢rgnd describe drawbacks of this approach. Nest,
discuss an object-oriented approach to developroéntlient/server programs, using Java; in particula
development of distributed systems with the helpools such as sockets, Remote Method InvocatiBivl),
and Corba. We compare some traditional and new ¥éebers. Finally, we make some recommendations on
which tools should be used for development of etiloical systems; in particular shared workspaces.

1. Client/Server Paradigm and the Web

www.manaraa.com

A centralized application is an application which runs on a Engachine. Adistributed application can consist
of a number of components located on several néearcomputers. For the latter type of an applicatia
client is a component of the application that makes retgu® another component of the application, cadled
server. Note that a client and a server terms refer tola that the software component plays rather toathe
component itself; i.e. a client can request infdiorafrom the server and then the server may askeat for
other information, at which time the server anddhent roles are reversed. A useful example of Hiiuation is

a technique calledallback, where a client who makes a request registerstivélserver, and thus the server can
call back the client. When the server calls baekdient, it becomes the client.

For each active software component therepsogess that runs this component (in general, a process is
a “program in execution”). For example, a cliendg@ss runs the client component.

The well known example of a client/server applioatis any Web browser (such as Netscape) and a
Web server (in the next section, we show how a Welwser and server communicate). Here, the rolgbef
client and server are fixed; the client Web browslgrays requests information from the Web server. such
systems, it makes sense to use a term a serverutemphich is a computer running a server procése
HTML pages, see (HTML 1994), are stored on the Wetver's computer and are downloaded to the client
machine when requested by the Web browser.

For two or more processes to communicate and egeharformation, there has to be some kind of a
protocol which is followed. For example, users running l& facility often put “o0” (for: over) and the endf o
each message, and “00” when they are to termihatedmmunication. While various distributed prognaing
systems use user-defined ad-hoc protocols, the Mgeb a standardized protocol, called HTTP, see B{TT
1998).

What is involved in client/serventeractions? A client may request simply some data; for exanal
Web browser requests text, images, etc. from thé B&ver. Then, a client downloads these data aed u
them, for example to display an image. This typa ofient is often referred to asall client; i.e. a client which
does no processing. The client can be more actidk raquest an executable program, which after being
downloaded, will be executed on the client. ForWeb, an applet is an example of an active cliehien it
appears in the HTML page, then it is downloadedhftbe Web server's computer and executed on teati
machine. Now, not only the information but also &xecution is distributed, which also distribute®tal load
related to an application in question.

At this point it may be relevant to ask whethés ibetter to use standalone client applicatiorspmlets
which reside in HTML Web pages? The major advantafgen applet is that most users have a Web browser
already installed, and for various reasons they tmaynwilling to download and install another apation.
Also, there is a lot of functionality provided byely browsers, such as displaying pages that inclexte
graphics, etc., and this functionality would hawée implemented in user-defined applications. éNbbwever,
that new java beans may provide this functionality be easily incorporated into existing appliazip

Another essential issue in a client/server paradigitie persistence of information; when a process
produces some data, is this data persistent thsgtvisd when the process terminates? This quedimuidsbe
discussed in the context of security: fetchingariisg data means accessing a local file systenttasdctivity
clearly creates a security risk. Other examplesuzh activities contacting any site other thangbever’s site.
While the fixed server, such as a Web server & atll-known location, a client may come from arknown
destination, and may disguise its identity or ebenan impostor. The client may decide to trust ne,and
reject any attempt to start the above activitiestrtist a selected site, or to trust everybody. &dmowsers,
Netscape included, make this decision for the tlard trust no one (although with some programniirig
possible to change this). Other browsers, for exarhfot Java, let you choose your trusted sites. Fifd@P
protocol isstateless; when one client interaction is terminated andribgt one starts, the server doesn’'t know
about the previous history. The only exceptionhis tule are the so callembokies which are usually short files
written by the Web server to the client's machittee (client may be asked if she or he agrees taviagea
cookie and may decline it). Sometimes, Web pagdsde invisible information used to remember thevjsus
state (used for example, when a client perform@rmafine transaction and responds to a series o$tipnes).
Therefore, a typical way of making data persisienio save them on the server's computer; using rgéom
Gateway Interface, CGI. Below, we describe thisitégque in details.

CGil involves programs that can be invoked by théb\WWerver. Here, we consider one commonly used
scenario that involves an invocation of a CGI paogr using a POST request specified by the HTTPopodt
When a Web browser (client) submits a POST redtieistrequest specifies a CGIl program, for exanilethe
Web server executes P. Now, P may need some igpat dhe Web server makes arrangements so thatisP ge

www.manaraa.com

its input from the data that are also providedhi@a POST request. This way, a CGIl program can psocgsit
data and write some results to the server, for @artore information in a database. In a similayvthe Web
server redirects the output from a CGI progran®® butputs any data, then this data is sent bathetbrowser.

If this data is in HTML format then the browser Miiterpret them in standard way, that is it wisplay a page
based on the HTML code. This technique can be tsetbatedynamic HTML pages that are created on the fly
by the server; unlike static pages that are reptedeby files, stored on the Web server’s side.dbyic HTML
pages are more interactive and useful for secueiigons; the client won't be able to access thagegunless
she or he starts at a place where a proper authéinti can take place. On the other hand, creatymgmic
HTML pages may significantly increase the load be terver (see the discussion below). Executing CGI
programs is a special case of server-side includesprograms or scripts that are executed orséreer as a
result of a special HTML tag.

2. Load

In a distributed environment, with multiple clierssd servers it is essential to consikbad balancing: if all the

work is done on the server then clients have téesfifom possibly long delays. In particular, fosimgle Web
server and a number of Web browsers (clients), & ¥&ver can be easily overloaded if the numbéhitsfis

too high. Most Web servers that are currently usaddle CGI requests in an inefficient way, startingew
process to invoke every new CGI program. Theresareral possible solutions to problems describexvetb
(1) One can use multiple servers and a specialwedware which distributes client requests and taaia

consistency between clients; see http: //www.zdoet/pcmag/features/loadbal/open.htm for detailsi@ad is

distributed between clients and servers. ThisiBistion has to take place at run-time, that is wecha dynamic
load balancing; and (3) More efficient way of hangICGI programs is used, for example using sesvisée
below).

3. Communication Techniques: Sockets

Any two processes running on two networked computan communicate using sockets (here, we asswahe th
network uses the TCP/IP protocafpckets are communication end-points, see (Stevens, 199%re are two
kinds of sockets: stream sockets and datagram so&keeam sockets are called connection-oriented because
their use resembles a telephone connection: oreegso(a server) has to listen for a connectionthadther
process (a client) uses the first process’ locationlIP address), and a port number (an integeeyab connect

to the server. Thus, an IP address is like the @hamber of a switchboard and a port number is éike
extension. Once a connection is established, batbegses can exchange information in both direstiantil
one of them decides to close the connection (dhgerver process is really a server only when coniration is

to be established; afterwards it can play bothsidlee client’'s and the server’s). Note that irs ttase, we don't
really need to use callbacks; the server has an lipe of communication with the client.

Data received over a socket connection can bepirggrd by the receiving process as a request to
perform some operation; this way a sending prooessindirectly “invoke” this operation by the redeig
process. Of course, both processes need to foll@ertain protocol known to both of them, for exaepd
verify whether or not the required operation hasrbsuccessfully completed. Stream sockets areblelithat is
any errors are reported and data will be automiaticetransmitted if necessary.

Besides stream sockets, there are alatagram sockets, for which the communication resembles
sending a package (called a datagram) by mailiestcprocess sends data and provides the addresk’ (a
address and a port number), but no fixed commubpitdink is established and the communication i$ no
reliable, that is the package could be lost. Agai,don’t need callbacks because a datagram cerdaiaturn
address, i.e. an address of the sender, whicheasdd by the server to call back the client.

In the remainder of this paper, we will only dissugream sockets and will refer to them simply as
sockets. Thestandard Web server and the browser use sockets to comatgni¢he Web server is represented
by a so-called daemon process (called an httpd;hwdtands for an HTTP daemon); i.e. a process whiosed
to accept requests on behalf of other programs,tlaead forward these requests to these programsetimy
like a telephone switching board). HTTPD listems & selected port (usually port 80), and the Weééntl

www.manaraa.com

connects to this port. When a connection with tlientis established, the daemon starts a seppratess to
service this client and returns to listening forttier connections (to avoid an expense of stadimgw process,
the server may maintain a pool of available proegsand use any available process, and start gpreess
only if the pool is empty). For any component oftiiML page, such as an image, a separate sockaecton
is established in order to transfer this componéstwe mentioned above, a standard security regpaing is
that a Web browser can only communicate with theb\Werver from which the communication originated, i
particular it can only open socket connection whfs server and not with any other computer. If thier
option is required, specialized servers are redujsee below).

4. Choice of a Programming Paradigm and L anguage

Programs that implement an educational systemaage land complex; therefore they should be develope
following standard software engineering technigq@esthat not only the code but also the designbeare-used
(thus, the use of design patterns, see (Arnold@woskling, 1998)). Therefore, it appears obvious dmaobject
oriented approach is the only approach that isecily acceptable. Among various object orientedymmming
languages available, we recommend Java becaubke @dllowing reasons. First, Java supports threadsalso
garbage collection, both centralized and distridut€hus, the programmer does not have to worry @abou
memory leaks; a major issue when using a language as C++. Second, Java is architecture neuthatd,T
Java is more than a programming language, it iysées that has a number of components and built-in
techniques such as Java Beans (for more informaea (Javasoft, 98)). Finally, Java supportsouari
communication and distribution techniques, and does not have to resort to using foreign librariisza can
be used to develop client applications, server iapipbns and also CGI programs. Currently, most CGI
programs are implemented in Perl, which is a lovelginterpreted, procedural language.

5. Techniquesto Distribute Execution

Using sockets for remote execution is rather cusdrae because it requires designing a protocol adihg to
this protocol. In addition, it is hard to desigrpardable protocols that would accommodate any duteeds.
There are two techniques which can be used to tiiretvoke remote actions: Remote Method Invocation
(RMI); and Common Object Request Broker ArchiteetlORBA. Below, we briefly describe each of these
techniques.

RMI, see (Javasoft, 1998) is a technique specifiat@;Ji.e. it can be used if we have two machines
running Java Virtual Machines (however, these maehimay run different operating systems). A sepvecess
exports an implementation of an object, which magp®rt a number of methods. A client process canka
these methods. This, from the programmer’s pointielv a callref.foo(arguments) looks the same no matter
whether the object ref is on the client's machioeijt is on a remote machine. For the implementatb this
technique, exported objects have to be known tegsstry, and a dedicated daemon process, callegjiatny
process, listens on a socket port (typically, dd399). The client connects to this registry procasd then
remote invocations made by the client are execatethe server's machine. Callbacks are easy toeiment
when using RMI; but some browsers such as Netseapére additional coding to enable special periviss
Unfortunately, the RMI programmer doesn’t know wWiesta remote object is really remote; i.e. storadao
different machine, or it happens to be stored @nltltal machine (in the same address space) anttakes
extra precautions to compensate for the fact thdt &ses different modes of parameter transmissinthése
two cases; for details see (Brose and al., 1997).

Corba is an abstract specification, see (OMG, 1281) its implementation (call€dRB) provides a
more general technique than RMI. Corba is langueagkoperating system independent. Both, the céindtthe
server program can be developed in any programtaimguage, although Java seems to be the easiest tand
it is becoming more and more popular, see for exar@bixWeb, (OrbixWeb, 1997). Unfortunately, duea
very general scope, Corba programming is not elasy.example a Java programmer must additionallywkno
details of mapping of a general specification laagg) called an IDL into Java, as well as many ottbennical
details. Again, Corba can easily take advantageatibacks, for an example see an implementatioa ofat
room in OrbixWeb, (OrbixWeb, 1997). Two machinesning Corba use a protocol called IIOP (Internétin

www.manaraa.com

ORB Protocol). Itis possible that there will heture implementations of RMI on top of 11OP, whiefil allow
the programmer to benefit both from the simplicifyfdava programming and the power of Corba conviggcti

6. Special-purpose Servers

Specialized servers are basically daemon proceésaesan be used for various reasons. For exartipg,can
be used to deal with security restrictions impobgdWeb browsers. If a Web browser wants to estaldis
socket connection with the socket located on a madid which is different from the Web server's mamhW,
then we need an additional server running on Ws fidday server will accept socket communications on behalf
of M, and then forward any messages to M (therenareestrictions on operations of the relay sefjvekaother
type of a specialized server running on the samghina as the Web server can be used to provideustasks
for which a Web server was not designed for. Famneple, if you want to develop a live chat room whét any
given time accepts no more than 10 users, or wixickpts only registered users, you may wish tcaggeeway
server, which will accept requests from the cliantl process them, either rejecting them, or acogptiem and
handing them over to the Web server. Here, we asduhat a Web server can not be expanded by addiegv
functionality. Finally, it may be useful to havespecialized relay server to perform other taskghsas a
communication with other servers (the so-calleeééehtiers architecture, see (Symantec, 1998)). kample,
Symantec Café implementation provides a serveed¢abAnywhere which supports a communication witad
base servers, see below.

7. Persistent I nformation

As described above, a generally acceptable wagawing information is to save it on the server,
because there are no restrictions on what the isearedo with its files. The best way to save infation is to
use a commercial data base, such Access or OrBgalevrite programs that access data bases in ahperta
manner independent of a particular database onkl eme Object Database Connectivity, ODBC. However,
ODBC is written in various languages and it is abject oriented. The better solution is to use Jagtabase
Connectivity, JDBC, which is a set of interfacestther directly access database servers or pravidiedge to
ODBC. If an application that uses JDBC is on theesanachine as the database server then it canldifedk”
to this server; this is calledtevo-tier architecture. Often, it is useful to be able to have an apfitlcaon one
machine M and a database server on another maEhifiéiis three-tier architecture is possible thanks to an
intermediate server running on M and communicatimith D, and this is how dbAnywhere has been
implemented.

8. Expandability

Since it is rarely possible to write an applicattbat will satisfy all current and future needs, mezd to be able

to expand our applications. One could rewrite tppliaation, or even better use inheritance and @rajesign
patterns to satisfy new needs and then restartaghidication. However, it is far better to dynantiigaexpand
running applications, and any Java applicationdanhis. As the first example, consider a smalltbtwapping
application that downloads code to perform a tdlis code can be changed on the server when a emsior
becomes available). For instance, an HTML page omayain an icon representing an applet represerging
discussion group. When the user clicks on this icthe applet downloads the discussion group. Web
applications can particularly benefit from dynang@gpandability. A Java Web browser can access a new
protocol and be unable to handle it; but with edtbitity it could download the protocol handler frothe server
and from that point on will be able to understamid protocol (Hot Java Web browser is an examplsuch an
application). A Java Web server, such as Sun’s Wé&ber of JigSaw can handle servlets, which arichihs
server-side applets (for more details see (Java$8f8)). A running server can be expanded to ple@view
services to the clients by using servlets.

www.manaraa.com

9. Summary and Recommendations

It is our opinion that no one should even consigkting large educational Web-based applicationd asing a
traditional, old fashioned technology, that is ®letb servers, CGI scripts written in Perl and a $yestem for
persistent data. Instead, one should consistestlyJava object oriented techniques to develop t@mythat

consists of components whose behavior and distoibwan be easily modified and expanded. In pdercuve

recommend servlets rather than CGlI, servlets and, RMCorba rather than sockets, and Java serather
then using ad-hoc user-defined specialized serireigur example of a live chat room, changing thetqrol or

distribution technique will be easy to do with trecommended approach and very difficult to do wath
traditional approach. For the same example, samiegsages using JDBC is rather trivial, while sawtimgm

using a file system is error prone and almost irsjids to modify. The cost of this approach is thati need

programmers who are highly skilled and experienigedbject oriented programming, but the benefitagse

outweighs the cost. The resulting software willhb&intainable, portable and modifiable.

References

Acadia University 1997. "Acadia Advantage" httpdimin.acadiau.ca/library/acadvant/advhome.htm

ACME 1996 http://plato.acadiau.ca/sandbox/homegrebtm

Alessi, S. M., & Trollip, S. R. 1991. Computer-Bddastruction. (2nd ed.). Prentice Hall.

Arnold, K. Gossling, J. The Java Programming Laggu&econd Edition. Addison-Wesley 1998.

Benford, S., Bowers, J., Fahlen, L., Mariani, 8d &odden, T. 1994. Supporting Cooperative WorKintual
Environments. The Computer Journal, 37(8).

Brose, G., Lorh, K. and Spiegel, A. Java Resist3jparent Distribution. The Object Magazine, D&A7t www.sigs.com

Colbourne, C.J., & Cockerton-Turner T., (1989).ndsHypertext for Educational Help Facilities. Unisi¢y of York,

Goldberg M. W., Salari S and Swoboda P. 1996 Wavide Web Course Tool: An Environment for BuildingWwv-
Based Courses", Computer Networks and ISDN Syst2&§1996).

Grudin, J. 1994. Groupware and Social Dynamics.C8A37, 1 (1994), 93-105.

Holmes, M. and Porter, D. 1996. Student Notebooknuters in Studio Courses. ED-MEDIA96, Bostonn@d.996).

HTML: The Definitive Guide, 1994, O’Reilly and Assates.

HTTP 1998: http://www.w3.0rg

Javasoft 1998: http: //www.javasoft.

Ketinger W.J. (1991). Computer Classrooms in Higbeéucation. Educational Technology. pp. 36-43.

Maurer, H. A (1988). Report on the COSTOC Proje&TCS Bull. 35.

Maurer, H. and Tomek, I. (1990). Hypermedia in Tedehing. Computers in Education, Elsevier Scighaglishers, IFIP.

Maurer, H., & Tomek, I. 1990. Hyper-G - A Surveyechnical Report 284, 1IG Techn. Universitat Graz.

Muhlh&auser, M., Borchers, J., Falkowski, C., Manskel996. The Conference/Classroom of the Futame:
Interdisciplinary Approach. ED-MEDIA6 Conference, AACE Proceedings, Boston, June 1996.

OMG 1995, Corba specification, New Y ork: John Wiley& Sons, 1995.

OrbixWeb Programmer’s Guide 1997. IONA Technologies PLC, November 1997.

Rodden, T. 1996. Populating the Application: A Model of Awareness for Cooperative Applications. In Proceedings of ACM
CSCW'96 Conference on Computer-Supported Cooperative Work, Cambridge, MA.

Shneiderman, B. and Alavi, M., Norman, K, and Borkowski, E. 1995. Windows of Opportunity in Electronic Classrooms.
Communications of the ACM, 38, 11 (1995).

Stevens, R. 1994. Unix Network Programming. Prentice-Hall.

Symantec, 1998: http://www.Symantec.com

Wake Forest 1997. http://www.wfu.edu/ThinkPad/Technol ogy-Guide/2intro_index.html

www.manaraa.com

